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Typical Machine Learning Types

• Supervised Learning
– Learning from labeled examples 

(for which the answer is known)

• Unsupervised Learning
– Learning from unlabeled 

examples (for which the answer 

is unknown)

• Reinforcement Learning
– Learning by trial and feedback, 

like the “child learning” example
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Supervised vs Unsupervised learning

• Supervised learning

– We have prior knowledge 
of the desired output
• Always have data set with 

ground truth (like image 
data sets with labels)

– Typical tasks
• Classification

• Regression 
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• Unsupervised learning
– No prior knowledge of 

the desired output
• Received radio signals from 

deep space

– Typical tasks
• Clustering

• Representation learning

• Density estimation 

We wish to learn the inherent 

structure of (patterns in) our data.
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Use cases for unsupervised learning

• Exploratory analysis of a large data set

– Clustering by data similarity

– Enables verifying individual hypothesizes after analyzing the clustered data

• Dimensionality reduction

– Represents data with less columns

– Allows to present data with fewer features

– Selects the relevant features

– Enables less power consuming data processing, and/or human analysis
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Curse of dimensionality
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• What is it?
– A name for various problems that arise when analyzing data in high 

dimensional space.
– Dimensions = independent features in ML

• Input vector size (different measurements, or number of pixels in an image)

– Occurs when d (# dimensions) is large in relation to n (number of 
samples). 

• Real life examples:
– Genomics

• We have ~20k genes, but disease sample sizes are often in the 100s or 1000s.



So what is this curse?

• Sparse data:
– When the dimensionality d increases, the volume of the space increases 

so fast that the available data becomes sparse, i.e. a few points in a large 
space

– Many features are not balanced, or are ‘rarely occur’ – sparse features

• Noisy data: More features can lead to increased noise  it is harder to find 
the true signal

• Less clusters: Neighborhoods with fixed k points are less concentrated as d 
increases.

• Complex features: High dimensional functions tend to have more complex 
features than low-dimensional functions, and hence harder to estimate
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Data becomes sparse as dimensions increase
• A sample that maps 10% of the 1x1 squares in 2D represent only 1% 

of the 1x1x1 cubes in 3D

• There is an exponential increase in the search-space
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Data sample
number increase to

avoid sparsity

• e.g. 10 observations
/dimension
– 1D:  10 observations

– 2D: 100 observations

– 3D: 1000 observations

– …
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Curse of dim - Running complexity

• Many data points (labeled measurements) are needed

• Complexity (running time) increase with dimension d

• A lot of methods have at least O(n*d2) complexity, where n is 
the number of samples

• As d becomes large, this complexity becomes very costly.
– Compute = $
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Sparisty increase: More regions with the same
number of data points
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Distances in high dimension

• Assume, we have a unit side (2D) square, 
what we divided to 100 equal small squares
– Calculate the ratio of the largest distance in a small 

square and the largest distance of the big square 
(in 2D)

• Assume, we have a unit side 100D cube, 
what we divided to 100 equal small 100D 
cubes
– Calculate the ratio Ratio of the largest distance in a 

small cube and the largest distance of the big cube
(in 100D)

– The average nearest neighbor distance is 95% of the 
largest distance!!!

– Euclidian distance becomes meaningless, most two 
points are “far” from each others
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Curse of dim - Some mathematical 
(weird) effects

• Ratio between the volume of a sphere and a cube for d=3: 

• When d tends to infinity the volume of the sphere (this ratio) tends to zero

• Most of the data is in the corner of the cube

– Thus, Euclidian distance becomes meaningless, most two points are “far” from 
each others

• Very problematic for methods such as  k-NN classification or k-means 
clustering because most of the neighbors are equidistant
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d 3 5 10 20 30 50

ratio 0.52 0.16 0.0025 2.5E-08 2.0E-14 1.5E-28



The nearest neighbor problem in a sphere

• Assume randomly distributed points in a sphere with a unit diameter

• The median of the nearest neighbors is l

• As dimension tends to infinity 

– The median of the nearest neighbors 
converges to 1
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“The Curse of Dimensionality” by Raúl Rojas
https://www.inf.fu-berlin.de/inst/ag-
ki/rojas_home/documents/tutorials/dimensionality.pdf 
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How to calculate dimensionality?

x1 x2 x3 x4

d1 1 2 1 1
d2 2 4 3.5 1
d3 3 6 17 1

• How many dimensions does the data 
intrinsically have here? 
(How many independent coordinates?)

– Two!
• x1 = ½ * x2 (no additional information, correlated, not independent)
• x4 is constant (carries no information at all!)
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How to avoid the curse?

• Reduce dimensions
– Feature selection - Choose only a subset of features
– Use algorithms that transform the data into a lower dimensional space (example – PCA, t-SNE)

*Both methods often result in information loss

• Less is More
– In many cases the information that is lost by discarding variables is made up for by a more 

accurate mapping/sampling in the lower-dimensional space
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Principal component analysis

(PCA)
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Dimensionality reduction goals

• Improve ML performance

• Compress data

• Visualize data (you can’t visualize >3 dimensions)

• Generate new complex features 
– Loosing the meaning of a feature 

– Combining temperature, sound and current to one feature will be meaningless for 
human (non-physical)
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Example – reducing data from 2d to 1d

• X1 and x2 are pretty redundant. We 
can reduce them to 1d along the 
green line

• This is done by projecting the points 
to the line (some information is lost, 
but not much)
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• Despite having  3D data most of it lies close to a plane

• If we were to project the data onto a plane we would have a more 
compact representation

• So how do we find that plane without loosing too much of the variance in 
our data?  PCA

Example – 3D to 2D
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Principal component analysis (PCA)

• Technique for dimensionality reduction

• Invented by Karl Pearson (1901)

• Linear coordinate transformation

– converts a set of observations of possibly correlated variables

– into a set of values of linearly uncorrelated orthogonal variables 
called principal components

• Deterministic algorithm
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PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension 

value. This makes the average of each dimension zero.
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PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension 

value. This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the
same variance. 
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PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension 

value. This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the
same variance. 

3. Covariance matrix: Calculate the covariance matrix
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Covariance (formal definition)

• Covariance x, x = var x

• Covariance x, 𝑦 = Covariance y, x

Variance(x)=
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2

=
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑥𝑖 − ҧ𝑥)

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

• Assume that x are random 
variable vectors 

• We have n vectors



Covariance example for 2D

• Positive
covariance 
between the 
two 
dimensions
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𝑥1

𝑦1

ҧ𝑥
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𝑦1 − ത𝑦<0

𝑥1 − ҧ𝑥<0

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)



Covariance example for 2D

• Negative
covariance 
between the 
two 
dimensions
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Covariance example for 2D

• No covariance 
between the 
two 
dimensions
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𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 <0

𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 <0
𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 >0

𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 >0

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)



Covariance matrix
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𝐶𝑜𝑣 σ =

𝑐𝑜𝑣(𝑥1, 𝑥1) 𝑐𝑜𝑣(𝑥1, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥1, 𝑥𝑚)

𝑐𝑜𝑣(𝑥2, 𝑥1) 𝑐𝑜𝑣(𝑥2, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥2, 𝑥𝑚)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥1)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥2)
⋮
⋯

⋮
𝑐𝑜𝑣(𝑥𝑚, 𝑥𝑚)

𝐶𝑜𝑣 σ =
1

𝑛
𝑋 − ത𝑋 𝑋 − ത𝑋 𝑇; 𝑤ℎ𝑒𝑟𝑒 𝑋 =

𝑥1
𝑥2
⋮
𝑥𝑚

• Diagonal elements 
are variances, i.e. 
Cov(𝑥, 𝑥)=𝑣𝑎𝑟 𝑥
– n is the number 

of the vectors

– m is the 
dimension

• Covariance Matrix 
is symmetric 
– commutative 𝐶𝑜𝑣 σ =

𝑣𝑎𝑟(𝑥1, 𝑥1) 𝑐𝑜𝑣(𝑥1, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥1, 𝑥𝑚)

𝑐𝑜𝑣(𝑥2, 𝑥1) 𝑣𝑎𝑟(𝑥2, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥2, 𝑥𝑚)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥1)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥2)
⋮
⋯

⋮
𝑣𝑎𝑟(𝑥𝑚, 𝑥𝑚)



PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension value. 

This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the same
variance. 

3. Covariance matrix: Calculate the covariance matrix

4. Eigenvectors and eigenvalues of the covariance matrix

– Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of 
the data variance on the new axis is the eigenvalue for that eigenvector. 
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x1

PC2
PC1

Principal
components will be 
orthogonal.
Uncorrelated, 
independent!



PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension value. 

This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the same
variance. 

3. Covariance matrix: Calculate the covariance matrix

4. Eigenvectors and eigenvalues of the covariance matrix

– Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of 
the data variance on the new axis is the eigenvalue for that eigenvector. 

5. Rank eigenvectors by eigenvalues 

6. Keep top k eigenvectors and stack them to form a feature vector

7. Transform data to PCs: 

– New data =      feature vectors (transposed) *   original data

11/19/2019 32
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c



11/19/2019 33



Principal Component Analysis (PCA)
• The idea is to project the data onto a subspace which compresses most of 

the variance in as little dimensions as possible.

• Each new dimension is a principle component

• The principle components are ordered according to how much variance in 
the data they capture
– Example:

• PC1 – 55% of variance
• PC2 – 22% of variance
• PC3 – 10% of variance
• PC4 – 7% of variance
• PC5 – 2% of variance
• PC6 – 1% of variance
• PC7 - ….
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We have to choose how many PCs to use from the top



How many 
PCs to use?

• Calculate the proportion of 
variance for each feature

– 𝑝𝑟𝑜𝑝. 𝑜𝑓 𝑣𝑎𝑟. =
𝜆𝑖

σ𝑖=1
𝑛 𝜆𝑖

– 𝜆𝑖 are the eigen values

• Rich a predefined threshold

• Or find the elbow of the 
Scree plot
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Scree plot elbow

Scree plot

Proportion 
of variance

Principal components

Variance
Cumulative variance



PCA Example
• Weekly food 

consumption of the 
four countries
– food types: variables

– countries: observations

• Clustering the 
countries:
– Needs visualization in 

17 dimension

• PCA: reduce 
dimensionality
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http://www.sdss.jhu.edu/~szalay/clas
s/2016-oldold/SignalProcPCA.pdf

http://www.sdss.jhu.edu/~szalay/class/2016-oldold/SignalProcPCA.pdf


PCA Example
• From PC1, two clusters 

are well separable

• Including PC2, the four 
clusters can be well 
separated 
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Coefficients of the Principal Components

Load plot shows the coefficients of the original
feature vectors to the principal components

11/19/2019 38



t-Distributed Stochastic Neighbor Embedding

(t-SNE)
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t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Introduced by Laurens Van Der Maaten (2008)

• Generates a low dimensional representation of the high dimensional data 
set iteratively

• Aims to minimize the divergence between two distributions

– Pairwise similarity of the points in the higher-dimensional space

– Pairwise similarity of the points in the lower-dimensional space

• Output: original points mapped to a 2D or a 3D data space

– similar objects are modeled by nearby points and 

– dissimilar objects are modeled by distant points with high probability

• Unlike PCA, it is stochastic (probabilistic)
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t-SNE implementation I
Step 1: Generate the points in the low dimensional data set (2D or 3D)

• random initialization 

• First two or three components of PCA

11/19/2019 41



t-SNE implementation II

The similarity of datapoint
xj to datapoint xi means 
the conditional probability 
pji that xi would pick xj

as its nearest neighbor. 

Step 2: Calculate the pair-wise similarities measures between data pairs 
(probability measure)

Exponential normalization of the 
Euclidian distances are needed due 
to the high dimensionality. 
(Curse of dimensionality)



Step 3: Define the cost function

• Similarity of data points in High dimension:

• Similarity of data points in Low dimension:

• Cost function (called Kullback-Leiber divergence between the two 
distributions):

• Large pji modeled by small qji Large penalty

• Large pji modeled by large qji Small penalty

• Local similarities are preserved
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t-SNE implementation III



t-SNE implementation IV
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Step 4: Minimize the cost function using gradient descent

• Gradient has a surprisingly simple form:

• Optimization can be done using momentum method



Physical analogy
• Our map points are all connected with springs in the low 

dimensional data map

• Stiffness of the springs depends on   pj|i - qj|i

• Let the system evolve according to the laws of physics

– If two map points are far apart while the data points are close, 
they are attracted together

– If they are nearby while the data points are dissimilar, they are 
repelled.

• Illustration (live)

– https://www.oreilly.com/learning/an-illustrated-introduction-to-
the-t-sne-algorithm
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Comparison of PCA and t-SNE on MNIST database
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PCA T-SNE

28x28 (784) dimensions      2 dimensions    



Autoencoder
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Autoencoder
• Neural network used for efficient data coding

• Uses the same vector for the input and the output
– No labelled data set is 

needed 

– Unsupervised learning

• Two parts
– Encoder: reduces data 

dimension

– Decoder: reconstructs 
data

– Middle layer: code
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𝑥2
′

𝑥3
′

𝑥5
′

Operation
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x4

x5

x6

Layer 1 Layer 2

x1
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𝑥1
′
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net(x)=x’

𝑥1
′

𝑥4
′

𝑥6
′

• The network is 
trained with the 
same input-
output pairs

• Loss function:

– MSE

– Cross Entropy 

• After network is 
trained, remove 
decoder part



Operation

• The network is 
trained with the 
same input-
output pairs

• Loss function:

– MSE

– Cross Entropy 

• After network is 
trained, remove 
decoder part
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New compressed

representation for 
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𝑎3



Example

• Coding MNIST data base
• 28x28 (784 dimensions)      2x5   (10 dimensions)    
• 78 times compression
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Autoencoder vs PCA

• Undercomplete autoencoder with 

– one hidden layer 

– linear output function 

– MSE loss 

• Projects data on subspace of first K principal 
components
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Undercomplete: width
(dimension) of 
hidden layer is smaller than 
width input/output layer



Denoising
• Trick:

– Adding noise to the input

– The desired output is the original input
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MNIST database coding to two dimension

5511/19/2019

Two neurons in 
the coding hidden 
layer



Autoencoder + t-SNE
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Two neurons in 
the coding hidden 
layer



Recurrent Neural Networks

• How to handle sequential signals with Neural Networks?

• General Architecture of the Recurrent Networks
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Static samples vs Data signal flow 

• Though human can 
recognize 
– Single letters
– Single sounds
– Single tunes
– Single pictures
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• But in real life we 
handle
– Texts 
– Speech
– Music
– Movies

Can feed-forward neural networks (perceptrons, 
conv. nets) solve these problems?

DATA MEMORY

Story

(temporal analysis 
of sequential data)

AlexNet could recognize 1000s of images.
ResNet could reach better then human performance.



Memory
• Our feed-forward nets had so far

– Program memory (for the weights)

– Registers 

• For storing data temporally due to implementation and not matematical
resasons

• Registers were not part of the networks

• After each inferences the net was reset
– All registers were deleted

– No information remained in the net after processing an input vector

– Therefore the order of a test sequence made no difference
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Recurrent networks (RNN)
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Feedback loop

Jürgen lives in Berlin.

He speeks ……………..

• Unlike traditional neural 
networks, the output of the RNN 
depends on the previous inputs 

– State 

• RNN contains feedback 

• Theoretically:

– Directed graph with cyclic loops

• From now, time has a role in 
execution

– Time steps, delays



Steps towards vectorized data and parameters

• Weights
(multiple
arrows)
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Steps towards vectorized data and parameters

• Weights
(multiple
arrows)
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Steps towards vectorized data and parameters

• Weights
(multiple
arrows) 

replaced
with
vectors
(single
arrows)
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Steps towards vectorized data and parameters

• Single arrows
indicate all 
interconnections 
between layers 

• wij matrix 
matematically



Introducing feedback loop
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ℎ 1 = 𝑓 ℎ 0 , 𝑥 1 = 𝐖𝒉𝑐(1)

ℎ()

𝑦()

𝑥()

ℎ 0 = 0

𝑥(1) =

𝑥1(1).
.
.

𝑥𝑘(1)

ℎ(0) =

ℎ1(0).
.
.

ℎ𝑙(0)
𝑐 1 =

ℎ1(0).
.

ℎ𝑙 0

𝑥1 1
.
.

𝑥𝑘(0)

𝑤: 𝑙 × 𝑘 + 𝑙 𝑠𝑖𝑧𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑎𝑡𝑟𝑖𝑥

concatenation

f() can be defined
as a more complex
function not only a 
matrix vector
multiplication.



Activation function in feedback loop

• Activation function of the
hidden layers is 
typically hyperbolic
tangent

• It avoids large positive 
feedback
– Keeps the output between

-1 and +1
– Avoids exploding the loop 

calculation
– Gain should be smaller 

than 1 in the loop!
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Positive feedback in a loop:
A produces more of B which 
in turn produces more of A.
It leeds to increase beyond 
any limit.

A                   B

x2

x2



Timing of the RNN
• Discrete time steps are used
• Input vector sequence to apply
• Signals are calculated in a node, when all inputs 

exist
• State machine
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input

x(1)

x(2)

x(3)

x(4)

…

Time Input State output

t=1 x(1) ℎ 1 = 𝑓 ℎ 0 , 𝑥 1 𝑦 1 = 𝑔 ℎ 1

t=2 x(2) ℎ 2 = 𝑓 ℎ 1 , 𝑥 2 𝑦 2 = 𝑔 ℎ 2

t=3 x(3) ℎ 3 = 𝑓 ℎ 2 , 𝑥 3 𝑦 3 = 𝑔 ℎ 3

t=4 x(4) ℎ 4 = 𝑓 ℎ 3 , 𝑥 4 𝑦 4 = 𝑔 ℎ 4

ℎ()

𝑦()

𝑥()

ℎ 0 = 0How to calculate back propagation?

.   .   .
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Unrolling
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x(1)

h(1)

y(1)

x(2)

h(2)

y(2)

x(3)

h(3)

y(3)

x(4)

h(4)

y(4)

h(0)

x(i)

ℎ 𝑖 = 𝑓 ℎ 𝑖 − 1 , 𝑥 𝑖

𝑦 i = 𝑔 ℎ 𝑖

.  .  .



Unrolling

• Unrolling generates an acyclic 
directed graph from the original 
cyclic directed graph structure

• It generates a final impulse 
response (FIR) filter from the 
original infinite impulse 
response (IIR) filter

• Dynamic behavior 
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…

FIR filters response 
to any finite length 
input with a final 
response.

IIR filters may response to 
any finite length input 
with a infinite (usually 
decaying) response, due 
to their internal loop.



Weight matrix sharing
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x(1)

h(1)

y(1)

x(2)

h(2)

y(2)

x(3)

h(3)

y(3)

x(4)

h(4)

y(4)

h(0)

x(i)
𝐖𝒉

ℎ 𝑖 = 𝑓 ℎ 𝑖 − 1 , 𝑥 𝑖 =

=𝐖𝒉 𝑐(1)

𝑦 i = 𝑔 ℎ 𝑖 = 𝐖𝒚ℎ 𝑖

𝐖𝒚

.  .  .

RNN re-uses the same weight
matrix in every unrolled steps.


