
Neural Networks

(P-ITEEA-0011)

Unsupervised learning techniques

Akos Zarandy

Lecture 9

November 19, 2019

Contents

• Supervised vs unsupervised learning

• Unsupervised learning techniques
• Curse of dimensionality

• Principal component analysis (PCA)

• t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Autoencoder

11/19/2019. 2

Typical Machine Learning Types

• Supervised Learning
– Learning from labeled examples

(for which the answer is known)

• Unsupervised Learning
– Learning from unlabeled

examples (for which the answer

is unknown)

• Reinforcement Learning
– Learning by trial and feedback,

like the “child learning” example

11/19/2019 3

Supervised vs Unsupervised learning

• Supervised learning

– We have prior knowledge
of the desired output
• Always have data set with

ground truth (like image
data sets with labels)

– Typical tasks
• Classification

• Regression

11/19/2019

• Unsupervised learning
– No prior knowledge of

the desired output
• Received radio signals from

deep space

– Typical tasks
• Clustering

• Representation learning

• Density estimation

We wish to learn the inherent

structure of (patterns in) our data.
4

Use cases for unsupervised learning

• Exploratory analysis of a large data set

– Clustering by data similarity

– Enables verifying individual hypothesizes after analyzing the clustered data

• Dimensionality reduction

– Represents data with less columns

– Allows to present data with fewer features

– Selects the relevant features

– Enables less power consuming data processing, and/or human analysis

11/19/2019 5

Curse of dimensionality

11/19/2019 6

• What is it?
– A name for various problems that arise when analyzing data in high

dimensional space.
– Dimensions = independent features in ML

• Input vector size (different measurements, or number of pixels in an image)

– Occurs when d (# dimensions) is large in relation to n (number of
samples).

• Real life examples:
– Genomics

• We have ~20k genes, but disease sample sizes are often in the 100s or 1000s.

So what is this curse?

• Sparse data:
– When the dimensionality d increases, the volume of the space increases

so fast that the available data becomes sparse, i.e. a few points in a large
space

– Many features are not balanced, or are ‘rarely occur’ – sparse features

• Noisy data: More features can lead to increased noise it is harder to find
the true signal

• Less clusters: Neighborhoods with fixed k points are less concentrated as d
increases.

• Complex features: High dimensional functions tend to have more complex
features than low-dimensional functions, and hence harder to estimate

11/19/2019 7

Data becomes sparse as dimensions increase
• A sample that maps 10% of the 1x1 squares in 2D represent only 1%

of the 1x1x1 cubes in 3D

• There is an exponential increase in the search-space

11/19/2019 8

Data sample
number increase to

avoid sparsity

• e.g. 10 observations
/dimension
– 1D: 10 observations

– 2D: 100 observations

– 3D: 1000 observations

– …

11/19/2019 9

Curse of dim - Running complexity

• Many data points (labeled measurements) are needed

• Complexity (running time) increase with dimension d

• A lot of methods have at least O(n*d2) complexity, where n is
the number of samples

• As d becomes large, this complexity becomes very costly.
– Compute = $

11/19/2019 11

Sparisty increase: More regions with the same
number of data points

11/19/2019 12

Distances in high dimension

• Assume, we have a unit side (2D) square,
what we divided to 100 equal small squares
– Calculate the ratio of the largest distance in a small

square and the largest distance of the big square
(in 2D)

• Assume, we have a unit side 100D cube,
what we divided to 100 equal small 100D
cubes
– Calculate the ratio Ratio of the largest distance in a

small cube and the largest distance of the big cube
(in 100D)

– The average nearest neighbor distance is 95% of the
largest distance!!!

– Euclidian distance becomes meaningless, most two
points are “far” from each others

11/19/2019 13

D

s

S

d

s2=
2 1

100
= 0.1

S2=1

D2= 2

d2=0.1 2

𝑅2 =
𝑑2

𝐷2

= 0.1

S100=1 s100=
100 1

100
= 0.95

D100= 100 = 10 d100= 100 ∗ 0.952 = 9.5

𝑅100 =
𝑑100

𝐷100

= 0.95

Curse of dim - Some mathematical
(weird) effects

• Ratio between the volume of a sphere and a cube for d=3:

• When d tends to infinity the volume of the sphere (this ratio) tends to zero

• Most of the data is in the corner of the cube

– Thus, Euclidian distance becomes meaningless, most two points are “far” from
each others

• Very problematic for methods such as k-NN classification or k-means
clustering because most of the neighbors are equidistant

11/19/2019 14

(
𝟒
𝟑)𝝅𝒓

𝟑

(𝟐𝒓)𝟑
≈
𝟒𝒓𝟑

𝟖𝒓𝟑
≈ 𝟎. 𝟓

d 3 5 10 20 30 50

ratio 0.52 0.16 0.0025 2.5E-08 2.0E-14 1.5E-28

The nearest neighbor problem in a sphere

• Assume randomly distributed points in a sphere with a unit diameter

• The median of the nearest neighbors is l

• As dimension tends to infinity

– The median of the nearest neighbors
converges to 1

11/19/2019 15

“The Curse of Dimensionality” by Raúl Rojas
https://www.inf.fu-berlin.de/inst/ag-
ki/rojas_home/documents/tutorials/dimensionality.pdf

l

How to calculate dimensionality?

x1 x2 x3 x4

d1 1 2 1 1
d2 2 4 3.5 1
d3 3 6 17 1

• How many dimensions does the data
intrinsically have here?
(How many independent coordinates?)

– Two!
• x1 = ½ * x2 (no additional information, correlated, not independent)
• x4 is constant (carries no information at all!)

11/19/2019 16

feature vectors (x)
o

b
se

rv
at

io
n

s
(d

)

x1

x2

x4

x3

How to avoid the curse?

• Reduce dimensions
– Feature selection - Choose only a subset of features
– Use algorithms that transform the data into a lower dimensional space (example – PCA, t-SNE)

*Both methods often result in information loss

• Less is More
– In many cases the information that is lost by discarding variables is made up for by a more

accurate mapping/sampling in the lower-dimensional space

11/19/2019 17

Classifier
performance

of variablesOptimal # of
variables

Principal component analysis

(PCA)

11/19/2019 18

Dimensionality reduction goals

• Improve ML performance

• Compress data

• Visualize data (you can’t visualize >3 dimensions)

• Generate new complex features
– Loosing the meaning of a feature

– Combining temperature, sound and current to one feature will be meaningless for
human (non-physical)

11/19/2019 19

Example – reducing data from 2d to 1d

• X1 and x2 are pretty redundant. We
can reduce them to 1d along the
green line

• This is done by projecting the points
to the line (some information is lost,
but not much)

11/19/2019 20

• Despite having 3D data most of it lies close to a plane

• If we were to project the data onto a plane we would have a more
compact representation

• So how do we find that plane without loosing too much of the variance in
our data? PCA

Example – 3D to 2D

11/19/2019 21

Principal component analysis (PCA)

• Technique for dimensionality reduction

• Invented by Karl Pearson (1901)

• Linear coordinate transformation

– converts a set of observations of possibly correlated variables

– into a set of values of linearly uncorrelated orthogonal variables
called principal components

• Deterministic algorithm

11/19/2019 22

PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension

value. This makes the average of each dimension zero.

11/19/2019 23
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension

value. This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the
same variance.

11/19/2019 24
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension

value. This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the
same variance.

3. Covariance matrix: Calculate the covariance matrix

11/19/2019 25
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

Covariance (formal definition)

• Covariance x, x = var x

• Covariance x, 𝑦 = Covariance y, x

Variance(x)=
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2

=
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑥𝑖 − ҧ𝑥)

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

• Assume that x are random
variable vectors

• We have n vectors

Covariance example for 2D

• Positive
covariance
between the
two
dimensions

11/19/2019 27

𝑥1

𝑦1

ҧ𝑥

ത𝑦

𝑦1 − ത𝑦<0

𝑥1 − ҧ𝑥<0

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

Covariance example for 2D

• Negative
covariance
between the
two
dimensions

11/19/2019 28

𝑦1

ത𝑦

𝑦1 − ത𝑦<0

𝑥1ҧ𝑥
𝑥1 − ҧ𝑥>0

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

Covariance example for 2D

• No covariance
between the
two
dimensions

11/19/2019 29

𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 <0

𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 <0
𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 >0

𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 >0

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

Covariance matrix

11/19/2019 30

𝐶𝑜𝑣 σ =

𝑐𝑜𝑣(𝑥1, 𝑥1) 𝑐𝑜𝑣(𝑥1, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥1, 𝑥𝑚)

𝑐𝑜𝑣(𝑥2, 𝑥1) 𝑐𝑜𝑣(𝑥2, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥2, 𝑥𝑚)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥1)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥2)
⋮
⋯

⋮
𝑐𝑜𝑣(𝑥𝑚, 𝑥𝑚)

𝐶𝑜𝑣 σ =
1

𝑛
𝑋 − ത𝑋 𝑋 − ത𝑋 𝑇; 𝑤ℎ𝑒𝑟𝑒 𝑋 =

𝑥1
𝑥2
⋮
𝑥𝑚

• Diagonal elements
are variances, i.e.
Cov(𝑥, 𝑥)=𝑣𝑎𝑟 𝑥
– n is the number

of the vectors

– m is the
dimension

• Covariance Matrix
is symmetric
– commutative 𝐶𝑜𝑣 σ =

𝑣𝑎𝑟(𝑥1, 𝑥1) 𝑐𝑜𝑣(𝑥1, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥1, 𝑥𝑚)

𝑐𝑜𝑣(𝑥2, 𝑥1) 𝑣𝑎𝑟(𝑥2, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥2, 𝑥𝑚)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥1)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥2)
⋮
⋯

⋮
𝑣𝑎𝑟(𝑥𝑚, 𝑥𝑚)

PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension value.

This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the same
variance.

3. Covariance matrix: Calculate the covariance matrix

4. Eigenvectors and eigenvalues of the covariance matrix

– Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of
the data variance on the new axis is the eigenvalue for that eigenvector.

11/19/2019 31
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

x2

x1

PC2
PC1

Principal
components will be
orthogonal.
Uncorrelated,
independent!

PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension value.

This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the same
variance.

3. Covariance matrix: Calculate the covariance matrix

4. Eigenvectors and eigenvalues of the covariance matrix

– Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of
the data variance on the new axis is the eigenvalue for that eigenvector.

5. Rank eigenvectors by eigenvalues

6. Keep top k eigenvectors and stack them to form a feature vector

7. Transform data to PCs:

– New data = feature vectors (transposed) * original data

11/19/2019 32
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

11/19/2019 33

Principal Component Analysis (PCA)
• The idea is to project the data onto a subspace which compresses most of

the variance in as little dimensions as possible.

• Each new dimension is a principle component

• The principle components are ordered according to how much variance in
the data they capture
– Example:

• PC1 – 55% of variance
• PC2 – 22% of variance
• PC3 – 10% of variance
• PC4 – 7% of variance
• PC5 – 2% of variance
• PC6 – 1% of variance
• PC7 - ….

11/19/2019 34

We have to choose how many PCs to use from the top

How many
PCs to use?

• Calculate the proportion of
variance for each feature

– 𝑝𝑟𝑜𝑝. 𝑜𝑓 𝑣𝑎𝑟. =
𝜆𝑖

σ𝑖=1
𝑛 𝜆𝑖

– 𝜆𝑖 are the eigen values

• Rich a predefined threshold

• Or find the elbow of the
Scree plot

11/19/2019 35

Scree plot elbow

Scree plot

Proportion
of variance

Principal components

Variance
Cumulative variance

PCA Example
• Weekly food

consumption of the
four countries
– food types: variables

– countries: observations

• Clustering the
countries:
– Needs visualization in

17 dimension

• PCA: reduce
dimensionality

11/19/2019 36

http://www.sdss.jhu.edu/~szalay/clas
s/2016-oldold/SignalProcPCA.pdf

http://www.sdss.jhu.edu/~szalay/class/2016-oldold/SignalProcPCA.pdf

PCA Example
• From PC1, two clusters

are well separable

• Including PC2, the four
clusters can be well
separated

11/19/2019 37

Coefficients of the Principal Components

Load plot shows the coefficients of the original
feature vectors to the principal components

11/19/2019 38

t-Distributed Stochastic Neighbor Embedding

(t-SNE)

11/19/2019 39

t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Introduced by Laurens Van Der Maaten (2008)

• Generates a low dimensional representation of the high dimensional data
set iteratively

• Aims to minimize the divergence between two distributions

– Pairwise similarity of the points in the higher-dimensional space

– Pairwise similarity of the points in the lower-dimensional space

• Output: original points mapped to a 2D or a 3D data space

– similar objects are modeled by nearby points and

– dissimilar objects are modeled by distant points with high probability

• Unlike PCA, it is stochastic (probabilistic)

11/19/2019 40

t-SNE implementation I
Step 1: Generate the points in the low dimensional data set (2D or 3D)

• random initialization

• First two or three components of PCA

11/19/2019 41

t-SNE implementation II

The similarity of datapoint
xj to datapoint xi means
the conditional probability
pji that xi would pick xj

as its nearest neighbor.

Step 2: Calculate the pair-wise similarities measures between data pairs
(probability measure)

Exponential normalization of the
Euclidian distances are needed due
to the high dimensionality.
(Curse of dimensionality)

Step 3: Define the cost function

• Similarity of data points in High dimension:

• Similarity of data points in Low dimension:

• Cost function (called Kullback-Leiber divergence between the two
distributions):

• Large pji modeled by small qji Large penalty

• Large pji modeled by large qji Small penalty

• Local similarities are preserved

11/19/2019 44

t-SNE implementation III

t-SNE implementation IV

11/19/2019 45

Step 4: Minimize the cost function using gradient descent

• Gradient has a surprisingly simple form:

• Optimization can be done using momentum method

Physical analogy
• Our map points are all connected with springs in the low

dimensional data map

• Stiffness of the springs depends on pj|i - qj|i

• Let the system evolve according to the laws of physics

– If two map points are far apart while the data points are close,
they are attracted together

– If they are nearby while the data points are dissimilar, they are
repelled.

• Illustration (live)

– https://www.oreilly.com/learning/an-illustrated-introduction-to-
the-t-sne-algorithm

11/19/2019 46

Comparison of PCA and t-SNE on MNIST database

11/19/2019 47

PCA T-SNE

28x28 (784) dimensions 2 dimensions

Autoencoder

11/19/2019 48

Autoencoder
• Neural network used for efficient data coding

• Uses the same vector for the input and the output
– No labelled data set is

needed

– Unsupervised learning

• Two parts
– Encoder: reduces data

dimension

– Decoder: reconstructs
data

– Middle layer: code

11/19/2019 49

𝑥2
′

𝑥3
′

𝑥5
′

Operation

11/19/2019 50

x4

x5

x6

Layer 1 Layer 2

x1

x2

x3

𝑥1
′

Layer 3

a1

a2

a3

net(x)=x’

𝑥1
′

𝑥4
′

𝑥6
′

• The network is
trained with the
same input-
output pairs

• Loss function:

– MSE

– Cross Entropy

• After network is
trained, remove
decoder part

Operation

• The network is
trained with the
same input-
output pairs

• Loss function:

– MSE

– Cross Entropy

• After network is
trained, remove
decoder part

11/19/2019

x4

x5

x6

Layer 1 Layer 2

x1

x2

x3

a1

a2

a3

New compressed

representation for

input.

𝑎1
𝑎2
𝑎3

Example

• Coding MNIST data base
• 28x28 (784 dimensions) 2x5 (10 dimensions)
• 78 times compression
11/19/2019 52

Autoencoder vs PCA

• Undercomplete autoencoder with

– one hidden layer

– linear output function

– MSE loss

• Projects data on subspace of first K principal
components

11/19/2019 53

Undercomplete: width
(dimension) of
hidden layer is smaller than
width input/output layer

Denoising
• Trick:

– Adding noise to the input

– The desired output is the original input

11/19/2019 54

MNIST database coding to two dimension

5511/19/2019

Two neurons in
the coding hidden
layer

Autoencoder + t-SNE

11/19/2019 56

Two neurons in
the coding hidden
layer

Recurrent Neural Networks

• How to handle sequential signals with Neural Networks?

• General Architecture of the Recurrent Networks

11/19/2019. 57

Static samples vs Data signal flow

• Though human can
recognize
– Single letters
– Single sounds
– Single tunes
– Single pictures

11/19/2019 58

• But in real life we
handle
– Texts
– Speech
– Music
– Movies

Can feed-forward neural networks (perceptrons,
conv. nets) solve these problems?

DATA MEMORY

Story

(temporal analysis
of sequential data)

AlexNet could recognize 1000s of images.
ResNet could reach better then human performance.

Memory
• Our feed-forward nets had so far

– Program memory (for the weights)

– Registers

• For storing data temporally due to implementation and not matematical
resasons

• Registers were not part of the networks

• After each inferences the net was reset
– All registers were deleted

– No information remained in the net after processing an input vector

– Therefore the order of a test sequence made no difference

11/19/2019 59

Recurrent networks (RNN)

11/19/2019 60

Feedback loop

Jürgen lives in Berlin.

He speeks ……………..

• Unlike traditional neural
networks, the output of the RNN
depends on the previous inputs

– State

• RNN contains feedback

• Theoretically:

– Directed graph with cyclic loops

• From now, time has a role in
execution

– Time steps, delays

Steps towards vectorized data and parameters

• Weights
(multiple
arrows)

11/19/2019 61

11/19/2019 62

Steps towards vectorized data and parameters

• Weights
(multiple
arrows)

11/19/2019 63

Steps towards vectorized data and parameters

• Weights
(multiple
arrows)

replaced
with
vectors
(single
arrows)

11/19/2019 64

Steps towards vectorized data and parameters

• Single arrows
indicate all
interconnections
between layers

• wij matrix
matematically

Introducing feedback loop

65

ℎ 1 = 𝑓 ℎ 0 , 𝑥 1 = 𝐖𝒉𝑐(1)

ℎ()

𝑦()

𝑥()

ℎ 0 = 0

𝑥(1) =

𝑥1(1).
.
.

𝑥𝑘(1)

ℎ(0) =

ℎ1(0).
.
.

ℎ𝑙(0)
𝑐 1 =

ℎ1(0).
.

ℎ𝑙 0

𝑥1 1
.
.

𝑥𝑘(0)

𝑤: 𝑙 × 𝑘 + 𝑙 𝑠𝑖𝑧𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑎𝑡𝑟𝑖𝑥

concatenation

f() can be defined
as a more complex
function not only a
matrix vector
multiplication.

Activation function in feedback loop

• Activation function of the
hidden layers is
typically hyperbolic
tangent

• It avoids large positive
feedback
– Keeps the output between

-1 and +1
– Avoids exploding the loop

calculation
– Gain should be smaller

than 1 in the loop!

11/19/2019 66

Positive feedback in a loop:
A produces more of B which
in turn produces more of A.
It leeds to increase beyond
any limit.

A B

x2

x2

Timing of the RNN
• Discrete time steps are used
• Input vector sequence to apply
• Signals are calculated in a node, when all inputs

exist
• State machine

67

input

x(1)

x(2)

x(3)

x(4)

…

Time Input State output

t=1 x(1) ℎ 1 = 𝑓 ℎ 0 , 𝑥 1 𝑦 1 = 𝑔 ℎ 1

t=2 x(2) ℎ 2 = 𝑓 ℎ 1 , 𝑥 2 𝑦 2 = 𝑔 ℎ 2

t=3 x(3) ℎ 3 = 𝑓 ℎ 2 , 𝑥 3 𝑦 3 = 𝑔 ℎ 3

t=4 x(4) ℎ 4 = 𝑓 ℎ 3 , 𝑥 4 𝑦 4 = 𝑔 ℎ 4

ℎ()

𝑦()

𝑥()

ℎ 0 = 0How to calculate back propagation?

. . .

11/19/2019

Unrolling

11/19/2019 68

x(1)

h(1)

y(1)

x(2)

h(2)

y(2)

x(3)

h(3)

y(3)

x(4)

h(4)

y(4)

h(0)

x(i)

ℎ 𝑖 = 𝑓 ℎ 𝑖 − 1 , 𝑥 𝑖

𝑦 i = 𝑔 ℎ 𝑖

. . .

Unrolling

• Unrolling generates an acyclic
directed graph from the original
cyclic directed graph structure

• It generates a final impulse
response (FIR) filter from the
original infinite impulse
response (IIR) filter

• Dynamic behavior

11/19/2019 69

…

FIR filters response
to any finite length
input with a final
response.

IIR filters may response to
any finite length input
with a infinite (usually
decaying) response, due
to their internal loop.

Weight matrix sharing

11/19/2019 70

x(1)

h(1)

y(1)

x(2)

h(2)

y(2)

x(3)

h(3)

y(3)

x(4)

h(4)

y(4)

h(0)

x(i)
𝐖𝒉

ℎ 𝑖 = 𝑓 ℎ 𝑖 − 1 , 𝑥 𝑖 =

=𝐖𝒉 𝑐(1)

𝑦 i = 𝑔 ℎ 𝑖 = 𝐖𝒚ℎ 𝑖

𝐖𝒚

. . .

RNN re-uses the same weight
matrix in every unrolled steps.

