Neural Networks

Unsupervised learning techniques

(P-ITEEA-0011)

Akos Zarandy
Lecture 9
November 19, 2019

Contents

e Supervised vs unsupervised learning

* Unsupervised learning techniques
e Curse of dimensionality
* Principal component analysis (PCA)
e t-Distributed Stochastic Neighbor Embedding (t-SNE)

e Autoencoder

11/19/2019. 2

Typical Machine Learning Types

input Data What is Supervised Learning?
‘ \ Ped ction
* Supervised Learning @ Q 00 ED
— Learning from labeled examples -/ ‘
?
(for which the answer is known) ut s Unsuperiet s S &
[[/
* Unsupervised Learning g“ Q 5‘5
— Learning from unlabeled o 0®
examples (for which the answer agent envivonment
|S unknown) from state s, take action a

* Reinforcement Learning
— Learning by trial and feedback,

R
like the “child learning” example é?é T\

11/19/2019 get reward R, new state s’

Supervised vs Unsupervised learning

0
* Supervised learning * Unsupervised learning
— We have prior knowledge — No prior knowledge of
of the desired output the desired output
» Always have data set with e Received radio signals from
ground truth (like image <?Ieep Space
data sets with labels) — Typical tasks
— Typical tasks * Clustering

* Representation learning
* Density estimation

e (Classification

* Regression) :
We wish to learn the inherent

structure of (patterns in) our data.
11/19/2019 4

Use cases for unsupervised learning

* Exploratory analysis of a large data set
— Clustering by data similarity

— Enables verifying individual hypothesizes after analyzing the clustered data

* Dimensionality reduction
— Represents data with less columns
— Allows to present data with fewer features
— Selects the relevant features

— Enables less power consuming data processing, and/or human analysis

11/19/2019 5

Curse of dimensionality

e Whatisit?
— A name for various problems that arise when analyzing data in high
dimensional space.

— Dimensions = independent features in ML
* Input vector size (different measurements, or number of pixels in an image)

— Occurs when d (# dimensions) is large in relation to n (number of
samples).

* Real life examples:

— Genomics
* We have ~20k genes, but disease sample sizes are often in the 100s or 1000s.

11/19/2019 6

So what is this curse? }f{

Sparse data:

— When the dimensionality d increases, the volume of the space increases
so fast that the available data becomes sparse, i.e. a few points in a large
space

— Many features are not balanced, or are ‘rarely occur’ — sparse features

Noisy data: More features can lead to increased noise = it is harder to find
the true signal

Less clusters: Neighborhoods with fixed k points are less concentrated as d
increases.

Complex features: High dimensional functions tend to have more complex
features than low-dimensional functions, and hence harder to estimate

11/19/2019 7

Data becomes sparse as dimensions increase

 Asample that maps 10% of the 1x1 squares in 2D represent only 1%
of the 1x1x1 cubesin 3D

10 — A
o g 4l NG
00 T : >
o I
o8 A "
R .
!,
o] ::: //
. , ‘\ "I’/
w : N—111
= e
) .t o)
. vaved
o4 ? R
3 A ELEE!
a3 =] /'1»*“(/ N\
vhs ey \
* ‘/ L PN
. K < &5 ' ‘\,\
o1 T "
o - ol ~
00 — . :,\\ ' ,«’/ﬁfds)‘
00 01 02 G3 O4 O5 00 O7 03 OO 10 TN ' e
x4 2~ s e

* There is an exponential increase in the search-space

11/19/2019 8

Data sample
number increase to
avoid sparsity 2 dimensions

100 positions
®

1 dimension:
10 positions

* e.g. 10 observations
/dimension
— 1D: 10 observations
— 2D: 100 observations
— 3D: 1000 observations

3 dimensions:
> 1000 positions!

11/19/2019

Curse of dim - Running complexity

* Many data points (labeled measurements) are needed
 Complexity (running time) increase with dimension d

* A lot of methods have at least O(n*d?) complexity, where n is
the number of samples

* As dbecomes large, this complexity becomes very costly.
— Compute =S

11/19/2019 11

Sparisty increase: More regions with the same
number of data points J

b) 2D - 16 regions

c) 3D - 64 regions

al 1D - 4 regions
]]] EU
®
e®
F 20
®
15 ® ® o ®
e o @ e
® .]
10 + c.n (10
° ®
5 s o %o e ,
0
@ T— 20
@ @ 00 BOCOD @D) 0 . —— e
| | | | | |
0 5 10 15 20 0 5 10 15 2 o
12

11/19/2019

Distances in high dimension 5,=1
s 1 o
Assume, we have a unit side (2D) square, D 52=\/% =
what we divided to 100 equal small squares d
— Calculate the ratio of the largest distance in a small D2=\/§
square and the largest distance of the big square
(in 2D) ° R { 4,20.1v2
R, = D—z =0.1 S
Assume, we have a unit side 100D cube, ’
what we divided to 100 equal small 100D oo
cubes S100=1 S100= \/% = 0.95

— Calculate the ratio Ratio of the largest distance in a

small cube and the largest distance of the big cube
(in 100D) D;00=v100 = 10

— The average nearest neighbor distance is 95% of the
largest distance!!!

- : : _ %100 _
— Euclidian distance becomes meaningless, most two Rigo = D_ = 0.95

points are “far” from each others 100
11/19/2019 13

d;0=V100 % 0.952 = 9.5

Curse of dim - Some mathematical
(weird) effects

4
§)n'r3 413

Ratio between the volume of a sphere and a cube for d=3: (273 ~8r3” 0.5

When d tends to infinity the volume of the sphere (this ratio) tends to zero

d 3 5 10 20 30 50
ratio 0.52 0.16 0.0025 2.5E-08 2.0E-14 1.5E-28

Most of the data is in the corner of the cube

— Thus, Euclidian distance becomes meaningless, most two points are “far” from
each others

Very problematic for methods such as k-NN classification or k-means
clustering because most of the neighbors are equidistant

11/19/2019 14

The nearest neighbor problem in a sphere

* Assume randomly distributed points in a sphere with a unit diameter

* The median of the nearest neighbors is |

* Asdimension tends to infinity T+ > datapoints
— The median of the nearest neighbors oy
converges to 1 ay
[[
+ "‘/‘j
+
\ |
\ E*
“The Curse of Dimensionality” by Raul Rojas \ \\ / +
https://www.inf.fu-berlin.de/inst/ag- \ \ y
ki/rojas_home/documents/tutorials/dimensionality.pdf o //’
. R = =
* ____ —

11/19/2019

How to calculate dimensionality?

feature vectors (x)

S
0 X, X, X3 X,
S d, 1 2 1 1
S d, 2 4 3.5 1
()]
g d 3 6 17 1

How many dimensions does the data
intrinsically have here?
(How many independent coordinates?)

— Two!

* x1 =% *x2 (no additional information, correlated, not independent)
* x4 is constant (carries no information at all!)

11/19/2019 16

How to avoid the curse?

ﬁ\vﬂ
Reduce dimensions e

S 4

Feature selection - Choose only a subset of features

Use algorithms that transform the data into a lower dimensional space (example — PCA, t-SNE)
*Both methods often result in information loss

Less is More

In many cases the information that is lost by discarding variables is made up for by a more
accurate mapping/sampling in the lower-dimensional space

"
Classifier

t
performance|| |
I
I
I
I
|

»
Optimal # of # of variables

11/19/2019 variables

17

Principal component analysis

(PCA)

11/19/2019 18

Dimensionality reduction goals N/
* Improve ML performance
* Compress data
. Visualize data (you can’t visualize >3 dimensions)

* Generate new complex features

— Loosing the meaning of a feature

— Combining temperature, sound and current to one feature will be meaningless for
human (non-physical)

11/19/2019 19

Example — reducing data from 2d to 1d
A "‘Wfﬂ/

N

X1 and x2 are pretty redundant. We
can reduce them to 1d along the
green line

9 (inches)

 Thisis done by projecting the points
to the line (some information is lost,
but not much)

-~
-

1 (cm)

HK—H—HK—HK KKK —

21

11/19/2019 20

w

-

; e
x3"' = :0 ‘ %8::\"- >

e

9 %%

AR v 3

o o o

o3

I
L2

Example —3D to 2D

* Despite having 3D data most of it lies close to a plane

a:3 v

Bk 3 & &

:131L.

* |f we were to project the data onto a plane we would have a more
compact representation
* So how do we find that plane without loosing too much of the variance in

our data? =2 PCA

11/19/2019

29 =
2 o o
2 C . (,é ._,(;L 3 o0 _" o
k y 090 % o
0F o oo ‘Q‘;‘ o o !)a % \P } o ©
P dog WO '."0‘5,:%50'3
o o0t SWE &8P o, o
0 . ,% ~ A e% o .l'.\‘ o ¥
g, 00 < O4 ' O 8°0
o° o)wqg?é%;ﬂﬁ/‘i A
‘ Sp® B "GOO “oo0 0B, g 2
q\‘S"o? v%’gﬁ" ey (;\LOI_P
B, F 0o 0 @
: B, ©° %W 3 ®8
P v 0 O . .
% Q 9
0 s
. =
0 &0 40 2 0 o)
€I9 .

21

Principal component analysis (PCA) E’{

* Technique for dimensionality reduction
* |nvented by Karl Pearson (1901)
* Linear coordinate transformation

— converts a set of observations of possibly correlated variables

— into a set of values of linearly uncorrelated orthogonal variables
called principal components

* Deterministic algorithm

11/19/2019 22

PCA algorithm

1. Mean normalization: For every value in the data, subtract its mean dimension
value. This makes the average of each dimension zero.

11/19/2019 23

https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension
value. This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the
same variance.

11/19/2013 https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c 24

PCA algorithm

. : : : : P
1. Mean normalization: For every value in the data, subtract its mean dimension W
value. This makes the average of each dimension zero. -

2. Standardization (optional): Do it, if you want to have each of your features the
same variance.

3. Covariance matrix: Calculate the covariance matrix

11/19/2013 https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c 22

Covariance (formal definition) Tf/

Assume that X are random
- . 1 _
variable vectors Vanance(x): ; 7il=1(xl' — x)z

We have n vectors 1

=~ iz (X =) (x; — %)

. 1 _ _
Covariance(x,y) = =¥, (x; — %) (y; —)

Covariance(x,x) = var(x)

Covariance(x, y) = Covariance(y, x)

Covariance example for 2D

Covariance(x,y) = % im1(xXi —xX)yi—y) 9

* Positive
covariance
between the
two y1 —Yy<0
dimensions

%/_/ x4 — x<0
11/19/2019

Covariance example for 2D

. 1 _ _ B
Covariance(x,y) = ~Xi_;(x; — X)(¥; = ¥)

* Negative 2-
covariance _
between the _ Y >*
y1 —y<0 .
two Vi &
dimensions .

11/19/2019 28

Covariance example for 2D

Covariance(x,y) = 1 i—1(x; = X)(yi — ¥)

n

* No covariance
between the
two
dimensions

11/19/2019

6

'8 6 4

i =)y —y

(x; - %) (yi - y) >0

* Diagonal elements
are variances, i.e.
Cov(x, x)=var(x)

— nisthe number
of the vectors

— misthe
dimension

e Covariance Matrix
Is symmetric
— commutative

11/19/2019

Covariance matrix

Cov (3) =

Cov (}) = %(X — X)X = X)T; where X =

Cov (}) =

cov(xq,X1)
cov(xy,x1)

Lcov (X, X1)

var(xq,x1)
cov(xy,x1)

cov(xq,X)
cov(xy,X5)

cov (X, X7)

cov(xq,X5)
var(x,,x,)

Llcov(Xy, x1) cov (X, Xo)

cov (X1, Xm)]
cov (X9, Xm)

cov (X, Xm)

cov (X1, Xm)]
cov(Xy, Xm)

var(X,, Xm)
30

PCA algorithm

1. Mean normalization: For every value in the data, subtract its mean dimension value. "{if“
This makes the average of each dimension zero. o

2. Standardization (optional): Do it, if you want to have each of your features the same
variance.

3. Covariance matrix: Calculate the covariance matrix

Eigenvectors and eigenvalues of the covariance matrix

— Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of
the data variance on the new axis is the eigenvalue for that eigenvector.

X .
2 Principal

components will be
PC PC; P
‘ 2 orthogonal.
@ o) Uncorrelated,
" -
& X & independent!
1

11/19/2013 https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

31

PCA algorithm

. : . : . B
1. Mean normalization: For every value in the data, subtract its mean dimension value. "Wf‘%
This makes the average of each dimension zero. W

2. Standardization (optional): Do it, if you want to have each of your features the same
variance.

3. Covariance matrix: Calculate the covariance matrix
4. Eigenvectors and eigenvalues of the covariance matrix

— Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of
the data variance on the new axis is the eigenvalue for that eigenvector.

5. Rank eigenvectors by eigenvalues
6. Keep top k eigenvectors and stack them to form a feature vector
7. Transform data to PCs:

— Newdata= feature vectors (transposed) * original data

11/19/2013 https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c 32

From k original variables: x;,x,,...,x,:
Produce k new variables: y,,y>,....Y:
Yi=apXytaX; .o+ agX

Yo = @pXq F @pXo ¥ .+ X ‘
> Vi 'S are
Principal Components

Vi = 8 Xq + aoXo + .o+ aeXy

{a41,819,...,a4} is 1st Eigenvector of of first principal component
{8,1,8,...,8} is 2nd Eigenvector of of 2nd principal component

{8k1,810,-..,8} IS kth Eigenvector of Of kth principal component

11/19/2019

33

Principal Component Analysis (PCA)

* Theideais to project the data onto a subspace which compresses most of
the variance in as little dimensions as possible.

* Each new dimension is a principle component

* The principle components are ordered according to how much variance in
the data they capture

— Example:

* PC1-55% of variance
* PC2-22% of variance
* PC3-10% of variance
* PC4 - 7% of variance
* PC5-2% of variance
* PC6 — 1% of variance
e PC7-...

PC1

We have to choose how many PCs to use from the top
11/19/2019 34

e leva
I I I 1 o I I
- — = — == - 4 - - QO - -1- - 4 - TTL
1 1 1 1 n 1 1
©
e i o -” S ._.._..”.._.
! ! ! 1 © ! I
>
) [o --'---- toro
I i I 1 > I
o gE 3
.-----_--._--.mm oo =2 taod
1 1 I 1 mu 1 Q
R N R K= B
+= I 1 . I o
O - - - - = - - R 304
F-NR R R R
e_|||_|||_||_|||_|||_|| u .mﬁ...__n_
Q! I 1 I I I (V)
u il B e N il TFod
gt S ¥
F - —I=- = -1l — — 4 - - + - —I- = - - 4 - - FE Od
L om — - = —l— — 4 — - b - -1 — —1— - 4 = L1 od
n1e o = = o = = o = = o
o 2
T ©
O -
Q © Y— ©
e < O ®)
a0 c® Y S
o v »
= =~ n = o+
— @© > D Y4
o W NS 5 0o
Q™ || = 5
o C . Q S
SO L w 9 0o
. oc < g .£ o
> v N = —
o 2 v
c s . Yo
(q0) (St V ¥
-) Q 3 . o <« = 0O
Mmm + QU C O —
O 22 § % 24
— (-
= L 2 8 Y g =
®© © — “ o0
H_OH O o> | £ O&
(o

35

Principal components

11/19/2019

England | Wales | Scotland | N Ireland

PCA Example Cheese 105 103 103 66
Carcass meat 245 227 242 267

* Weekly food Other meat 685 803 750 536
consumption of the Fish 147 160 122 93
four countries Fats and oils 193 235 184 209

: o Sugars 156 175 147 139

— food types: variables

, , Fresh potatoes 720 874 566 1033

— countries: observations Fresh Veg 953 265 171 143

* Clustering the Other Veg 488 570 418 355
countries: Processed potatoes 198 203 220 187

_ Needs visualization in Processed Veg 360 365 337 334

17 dimension Fresh fruit 1102 1137 957 674
_ Cereals 1472 1582 1462 1494

’ P_CA' re.duce. Beverages 57 73 53 A7
dimensionality Soft drinks 1374 | 1256 | 1572 1506
Alcoholic drinks 375 475 458 135

http://www.sdss.jhu.edu/~szalay/clas Confectionery 54 64 62 41

s/2016-oldold/SignalProcPCA.pdf

11/19/2019

UK food consumption in 1997 (g/person/week). Source: DEFRA

http://www.sdss.jhu.edu/~szalay/class/2016-oldold/SignalProcPCA.pdf

eigenvalue

-
a

—-
o
T

(6]
T

PCA Example

* From PC1, two clusters
are well separable

* Including PC2, the four
clusters can be well
separated

Figenspectrum

1
3 4

1 2

eigenvector number

11/19/2019

Projections onto first principal component (1-D space)

1
05
OF]] L] ® -
Wal Eng Scot N Irg
-05}
_1 1 1 1 1 1 1 1
-300 -200 -100 0 100 200 300 400 500
PC1

Projections onto first 2 principal components (2-D space)

PC2

400
200 ® Wal
N Iree®

0F ® Eng 4

-200
® Scot

_400 L 1 1 1 1 L 1L

-300 -200 -100 0 100 200 300 400 500

PC1
37

effect(PC2)

Coefficients of the Principal Components

Load plot
1 T T 400
osl Fresh potatoes o0 ® Wal
ol Fresh fruit ,;gtht:ﬁm o} o Eng N lree |
’Mcohoncdﬂgkg
05 -200
*Soft drinks ® Scot
-1 L L a . L L _49%00 —260 -1 (I)O (I) 1 (IJO 260 360 4(I)U 500
-08 -06 -04 -0.2 0 02 0.4 06 PCA
effect(PC1)
Load plot shows the coefficients of the original
feature vectors to the principal components
38

11/19/2019

t-Distributed Stochastic Neighbor Embedding

(t-SNE)

11/19/2019 39

t-Distributed Stochastic Neighbor Embedding (t-SNE)

* Introduced by Laurens Van Der Maaten (2008)

* Generates a low dimensional representation of the high dimensional data
set iteratively

* Aims to minimize the divergence between two distributions
— Pairwise similarity of the points in the higher-dimensional space
— Pairwise similarity of the points in the lower-dimensional space

e OQOutput: original points mapped to a 2D or a 3D data space
— similar objects are modeled by nearby points and

— dissimilar objects are modeled by distant points with high probability
Unlike PCA, it is stochastic (probabilistic)

11/19/2019 40

t-SNE implementation |

Step 1: Generate the points in the low dimensional data set (2D or 3D)

* random initialization

e First two or three components of PCA

High Dim Low Dim
® o o @
- .0:(> C I
O
: O)

11/19/2019 41

t-SNE implementation |l

AP
Step 2: Calculate the pair-wise similarities measures between data pairs j/f
(probability measure)
High Dim ow Dim
e The similarity of datapoint
i X; to datapoint X; means
O O yi J . .
the conditional probability
O => ® @ P;i that X; would pick X;
O O as its nearest neighbor.
= ep(=lixi = x[?/20%) (1+ [y —yl1»)
1y L —
T Yk exp(=1x — x| [?/20?) W a0+ vk -yl

Exponential normalization of the
Euclidian distances are needed due
to the high dimensionality.

(Curse of dimensionality)

t-SNE implementation Il

\)

Step 3: Define the cost function w

_exp(—|lx — x|[*/20%)
>kt &XP(=I|x1 — xk|[2/202)

* Similarity of data points in High dimension: il

* Similarity of data points in Low dimension: . _ L+l —ylH)~
d >kt (L4 lyk = yil?) !
e Cost function (called Kullback-Leiber divergence between the two

distributions): Pij
C=KLP[|@)=) } :Pij’ogq—f
: ij

J

i

* Large p; modeled by small q; > Large penalty

* Large p;; modeled by large q; - Small penalty

e Local similarities are preserved

11/19/2019 44

t-SNE implementation IV

Step 4: Minimize the cost function using gradient descent

* Gradient has a surprisingly simple form:

oC .
=4 (e —)L+ Iy =yl) i —)
i i

* Optimization can be done using momentum method

11/19/2019 45

Physical analogy

Our map points are all connected with springs in the low
dimensional data map

Stiffness of the springs depends on p;;; -) e \?/e '.
Let the system evolve according to the laws of physics !
— If two map points are far apart while the data points are close, . ®/_g
they are attracted together :
— If they are nearby while the data points are dissimilar, they are = |
repelled. - e
By o S
lllustration (live) B A A e
oY RSN O
— https://www.oreilly.com/learning/an-illustrated-introduction-to- e o RISt ’%'"
the-t-sne-algorithm S
® e
® . .
@

11/19/2019 46

2 dimensions

9

28x28 (784) dimensions

Comparison of PCA and t-SNE on MINIST database

Autoencoder

11/19/2019 48

Autoencoder

* Neural network used for efficient data coding
e Uses the same vector for the input and the output

— No labelled data set is Input Output
needed N -
— Unsupervised learning VoS P //
* Two parts VoINS~ (Code TN
P \ ! N -~/ \
— Encoder: reduces data v/ NN \J
dimension A A N /\\
/\ / \ / \ / \
— Decoder: reconstructs /N /o <~ \ ro
data // \[|2~ Sl
: _ - SO
— Middle layer: code /’/// R
w v J . Y _J

11/19/2019 Encoder Decoder 49

Operation

* The network is
trained with the
same input-
output pairs

* Loss function:
— MSE
— Cross Entropy

e After network is
trained, remove

decoder part
11/19/2019

Operation

* The network is
trained with the
same input-
output pairs

* Loss function:
— MSE

— Cross Entro
> New compressed
representation for

input.

* After network is
trained, remove

decoder part
11/19/2019

Example

—» Encoder —>E_> Decoder |

Original
input

Reconstructed
input

Compressed
representation

 Coding MNIST data base
e 28x28 (784 dimensions) 2> 2x5 (10 dimensions)
* 78 times compression

11/19/2019 52

Autoencoder vs PCA

* Undercomplete autoencoder with

— one hidden layer
— linear output function
— MSE loss

Undercomplete: width
(dimension) of

hidden layer is smaller than
width input/output layer

* Projects data on subspace of first K principal

components

11/19/2019

53

Denoising

* Trick:
— Adding noise to the input
— The desired output is the original input

—» Encoder Decoder
MNoise

7l2]/jol4l/]7]als]7

MNoisy
Inpu

MNIST database coding to two dimension

label =5 label = 0
_ (+10) T T T ; T T T
1
2
3
40 4
5
H 6
Two neurons in B AR AR R 7
. . L £ I-” N ' 0 e 3 z 8]
the coding hidden ?° B P 9
layer . : syl
o
= 0+ -
[=
Q
£
£ #
g -20 + - R
~N s
40 - ':" o
-60 - e e ']
-80 1 1 1 ! 1] 1
-80 -60 -40 -20 0 20 40 60 80

1st dimension

Autoencoder + t-SNE

123456789m <
E L 1 1 L |]
2 o o o o o o
> < ~ [T ©
uoIsuUaWIp puz
c
()}
c ©
— O
2 ©
S
s
c O
O [-
O (]
2 2 >
— = O

label = 0

label =5

-30

-40

-10 10 20 30 40 50
1<t dimencinn

-20

-50

Recurrent Neural Networks

e How to handle sequential signals with Neural Networks?
* General Architecture of the Recurrent Networks

11/19/2019. 57

Static samples vs Data sighal flow

AlexNet could recognize 1000s of images.
ResNet could reach better then human performance.

 Though human can Butinreal life we
recognize handle Story
— Single letters — Texts _
— Single sounds » _ Speech (temporal gnaly5|s
— Single tunes — Music of sequential data)
— Single pictures — Movies

Can feed-forward neural networks (perceptrons,
conv. nets) solve these problems?

DATA MEMORY

11/19/2019 58

Memory
e Qur feed-forward nets had so far

— Program memory (for the weights)

— Registers

* For storing data temporally due to implementation and not matematical
resasons

e Registers were not part of the networks

* After each inferences the net was reset
— All registers were deleted
— No information remained in the net after processing an input vector
— Therefore the order of a test sequence made no difference

11/19/2019 59

Recurrent networks (RNN)

Unlike traditional neural
networks, the output of the RNN

depends on the previous inputs Jirgen lives in Berlin.

_ State He speeks
RNN contains feedback
Theoretically: Feedback loop

— Directed graph with cyclic loops

From now, time has a role in
execution @\ <K
y

— Time steps, delays @/
2 ——

—— output layer

input layer \ Y J (class/target)

hidden layers: “deep” if > 1
11/19/2019 60

LY

Steps towards vectorized data and parameters

* Weights
(multip|e Input value 1
arrows)
Input value 2 Output values
Input value 3
_J I _J
11/19/2019 Input Hidden Output

Layer Layer Layer

Steps towards vectorized data and parameters

Weights
(multiple
arrows)

11/19/2019

Input value 1

Input value 2

Input value 3

\m Output values

Input Hidden Output
Layer Layer Layer

Steps towards vectorized data and parameters

Weights
(multiple
arrows)

replaced

with
vectors nput Vector Output Vector
(single

arrows)

11/19/2019 Input Hidden Output
Laver Laver Laver

Steps towards vectorized data and parameters

Single arrows input vector Output Vector
indicate all

interconnections
between layers
Wj; matrix
matematically

11/19/2019 Input Hidden Output
Laver Laver Laver

Introducing feedback loop

"hy(0)7
' h1(0)
h(0) = '
| h, (0) 1 concatenation h;(0)
(1) D=y
x(1) = |
(1) 2O g

h(1) = £(h(0),x(1)) = Wxc(1)

w: | X (k+1) sized weight matrix

f() can be defined
as a more complex
function not only a
matrix vector
multiplication.

340,

Q
9

x()

h(0) =0

65

Activation function in feedback loop

e Activation function of the
hidden layers is

typically hyperbolic L
tangent

* |t avoids large positive
feedback

— Keeps the output between
-1and +1

- ?&‘]’IC(’:LO:Z teiéﬁlodlng the loop Positive feedback in a loop: X2

_ Gain should be smaller A produces more of B which /\
than 1 in the loop! in turn produces more of A. A B
It leeds to increase beyond u
any limit. X2
11/19/2019 66

Timing of the RNN

Discrete time steps are used
Input vector sequence to apply

Signals are calculated in a node, when all inputs

exist

State machine

m_m L
h(D) = F(h),x()) ¥(D) = g(h(D) CP

x(1)
t=2 x(2)
t=3 x(3)
t=4 x(4)

11/19/2019

340,

h2) = f(h(1),x(2) y(2) = g(h(2))

h@3) = f(h(2),x3)) y(3) =g(h®3))

h(4) = f(h(3),x(4)) y(4) = g(h(4)) o
X

How to calculate back propagation? h(0) =0

hQ)

x(1)
X(2)
X(3)
X(4)

Unrolling

y(@ = g(h@®) y(1)

h(0) h(1)
—

<[?(i) = f(h(i — 1), %))

X(1) X(1)

11/19/2019

\)

N

y(2) y(3) y(4)

h(2) h(3) h(4)

X(3) X(4)

68

Unrolling

* Unrolling generates an acyclic
directed graph from the original _
cyclic directed graph structure

* |t generates a final impulse
response (FIR) filter from the
original infinite impulse

response (lIR) filter lIR filters may response to FIR filters response
« Dynamic behavior ar?y fln!te.le.ngth input jco any fl.nlte I-ength
with a infinite (usually input with a final
decaying) response, due response.

to their internal loop.

11/19/2019 69

Welght matrix Sharing RNN .re-uses the same weight

matrix in every unrolled steps. (’Wq

y(@ = g(h()) = Wyh() YD y(2) y(3) y(4)

. e_o O C
5w moae e

> 4

: W,
Dy = (- Dx@)- O
=Wj c(1)

11/19/2019 70

X(2) X(3) X(4)

